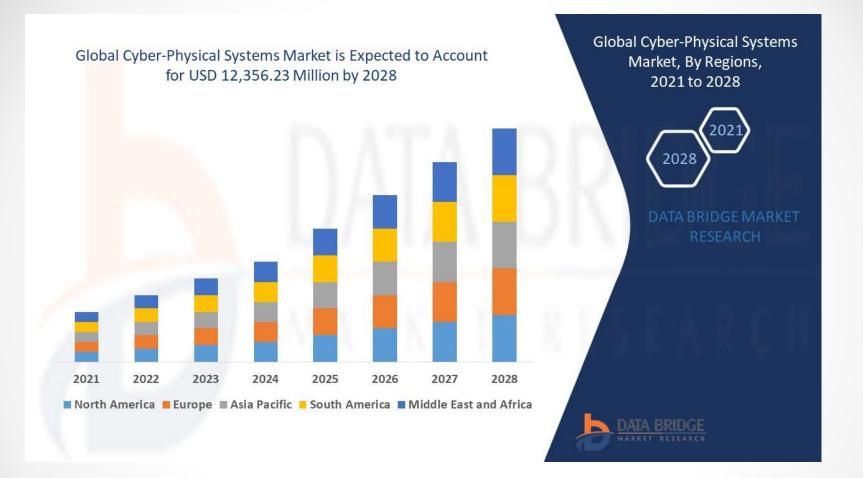
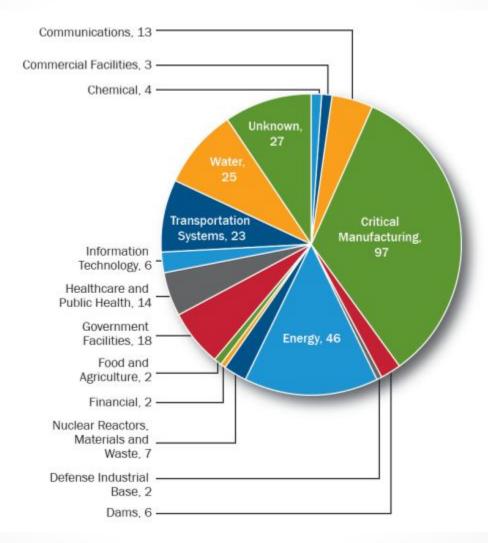

Cyber-Physical Smart Grid Security

Dr Neetesh Saxena


Associate Professor IEEE Senior Member DAAD and TCS Fellow Alumni Vice Chair, DASIG – IEEE UK and Ireland Systems Council **Cardiff University, United Kingdom**

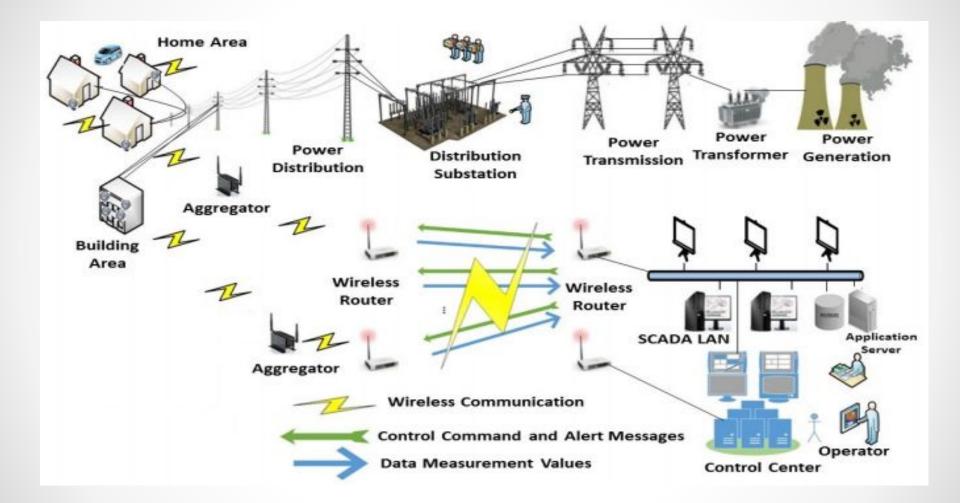
Cyber-Physical Systems


CPS Industry Market

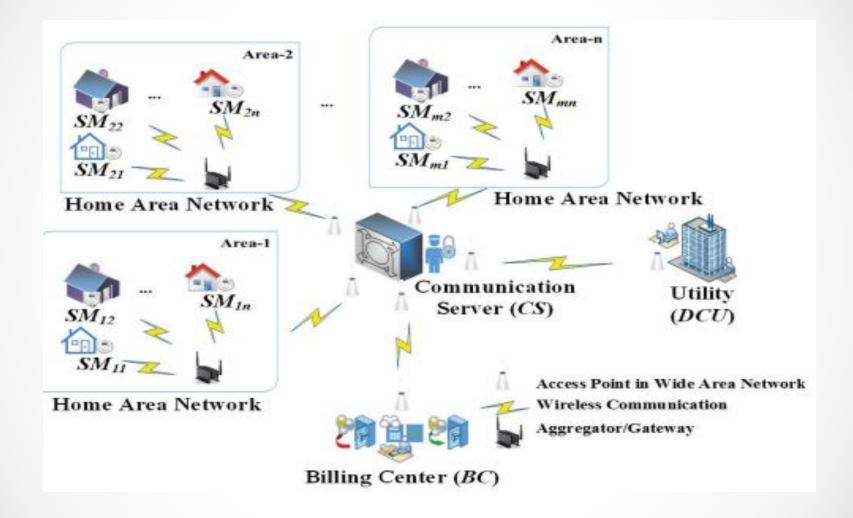
Cyber-physical systems market will reach at an estimated value of USD 12,356.23 million by 2028 and grow at a CAGR of 10.55% in the forecast period of 2021 to 2028.

Increase in the penetration of internet acts as an essential factor driving the cyber-physical systems market.

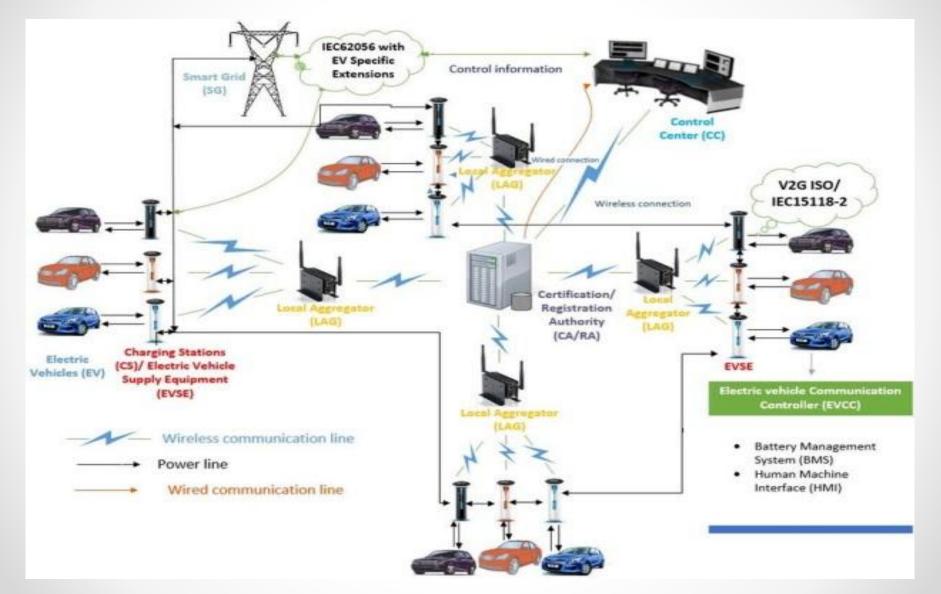
Incidents by Sectors



Research Interests


Critical Infrastructure Protection, Cyber Security, and Cyber-Physical System Security

Critical Systems Protection	Vulnerability Assessment	System Simulation
Information Assurance Authentication, identity and access management, availability, encryption, and non-repudiation.	Vulnerability Identification and Detection APT C&C malware - BlackEnergy, DoS attack, use of social engineering techniques (email).	Attack Modelling and Metrics Investigation Cyber-attacks, component criticality matrix, trust matrix.
Develop Strategies and Architectures For SG For V2G For Cellular network and SMS	Incident Responses Response to cyber incidents and remediate attacks, host-based and log-based analysis.	Accurate Reports and Result Analysis CPS impact monitoring and analysis.
Securing Pub/Sub info Secure wireless comm. info.	Network Forensics IDS, Wireshark with Jpcap, IP/TCP/ UDP/ICMP/DNP3, traffic analysis.	Analysis of Securing Last-Mile Communications Measurements, control commands and alert messages.


CPS Application 1

CPS Application 2

CPS Application 3

ICS – Situational Awareness

Last-Mile Resilient Communication – solution for critical commands and data delivery & Situational Awareness – understanding impact of cyber attacks

Situational Awareness – ICS

- Life safety, monitoring, security, mass notification
 - When is it too late? track progress
 - Detect/recommend servicing before m/c /device breaks
 - reduce production/maintenance downtime.
 - Advance alerts handled before emergency.
 - Receive an alert if a machine/device is overheating
 - Monitor when to change devices.
 - Informing the correct people
 - Sensors added to m/c /device send alert.
 - Incorporating existing systems into a situational alerting platform
 - multifaceted security control systems.

ICS/OT Resilience Techniques

- Effective analytics monitoring
- Adaptive responses
- Deception
- Diversity techniques
- Dynamic positioning & representation
- Coordinated defence & segmentation

Power Grid Attack: Investigation & Solutions

- **Targeting cyber-attacks on Ukraine power grid one of the most critical issues worldwide.**
 - Controlled a system, opened breakers, and took 30 substations, 2 power dist. centers offline.

How?

- Had gained access to user accounts for networks and devices.
- Wrote malicious firmware to replace the legitimate firmware.
- Launched telephone denial-of-service attack.
- Phishing campaign workers clicked on the phishing attachment enable macros.
- Ukraine utilities were forced to bear economic losses, down reputation, left consumers in dark.
- Word/Excel enables macros triggers BlackEnergy
 - extracts the list of proxy servers in the networks.

Detection

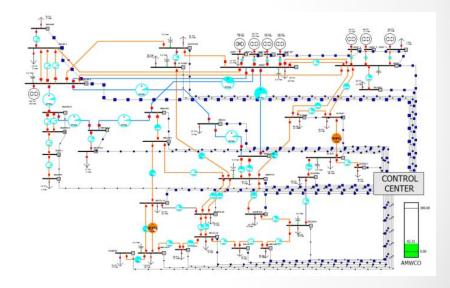
- Designed a Tool Event Logs and Host-Based Monitoring.
 - Centralized Timeline analysis: log files access, registry data, Internet history files.
 - **Communication network log files:** start/stop activity time, ACK status, comm. parameters.
 - Other logs: attempts of wrong password/change settings of the device, temporal anomalies.
- Extract macros without running Excel/Word oledump (object linking and embedding tool).
- Network Forensics and IPS/IDS Rules Formation Suricata, DNP3 and Wireshark.
 - Block malicious URLs and masks, botnet C&C URLs + IP addresses and port#.
 - Compute and block MD5/SHA hashes of malicious objects/files database.
 - OWASP File Hash Repository

Cyber-Physical Situational Awareness

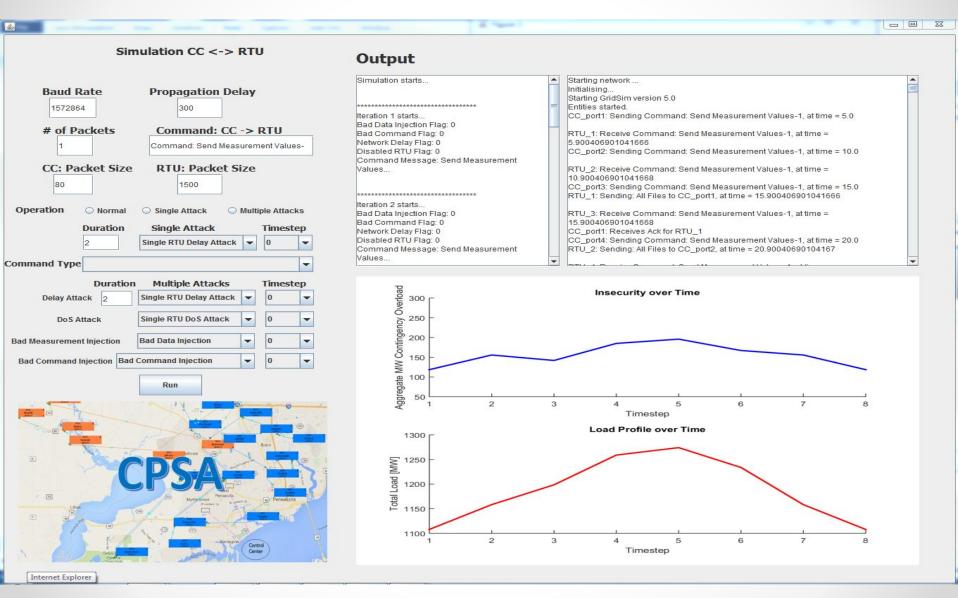
Objectives

- System-level cyber-security assessment.
- Steady-state cyber-attack impact assessment.
- Cyber-security state estimator with system-level comm. topology.

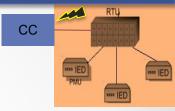
Situational Awareness: Effects of Cyber Attacks


Evaluate system behavior with cyber-attacks scenarios. Evaluate system behavior with future demands scenarios. 30 iterations- next half an hour with varying load.

Understanding cyber-physical effects.

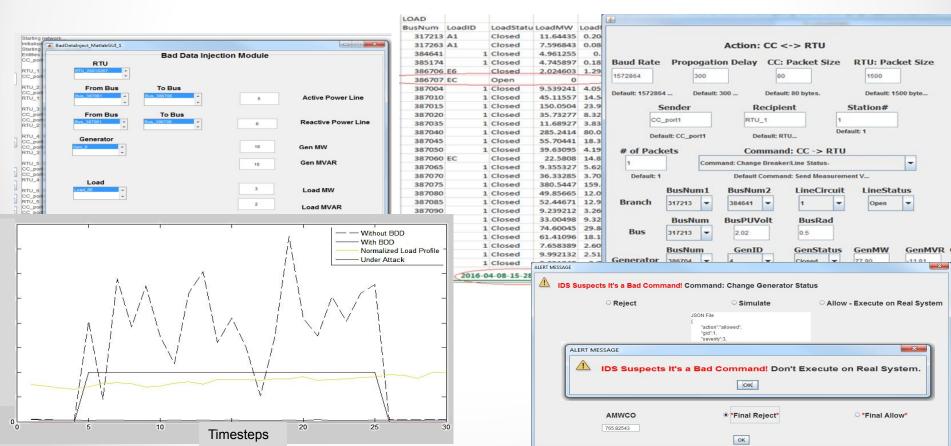

"Under Attack" Scenario:

- System recovery from a critical security issue
 - frequent generation of dynamic secrets and secret keys recover the system.
- Situational awareness



Effects of Cyber and Physical Events

Event	Туре
Altered Measurement	Cyber
RTU stream blocked	Cyber
Unexpected load increase	Physical
Altered control command	Cyber



Bad Measurement Injection & Malicious Command Injection

- Scenario: Case 1
 - Attacker manipulates raw measurements at RTU.
 - RTU sends bad measurements to the CC.
 - IDS/DSE provides an alert of suspicious data.

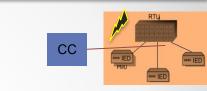
- Scenario: Case 2
 - Attacker intercepts a legitimate command, alters it.
 - IDS identifies bad command based on its rules.
 - IDS notifies to the CC and asks for confirmation.
 - Operator simulates confirms or rejects command.

Malicious Command Injection

IDS Suspects It's a Bad Comm	nand! Command: Change Breaker/Line Statu
○ Reject	Simulate
	{ "action":*allowed", "gid":1, "severity":3, "algnature_id":1 "dest_ip":*192.168.66.34", "event_type":"alert", "pcap_cnt":15, "arc_ip"*192.168.66.33", "timestamp":"2007-05-03T11:26:26.157752-0400", }

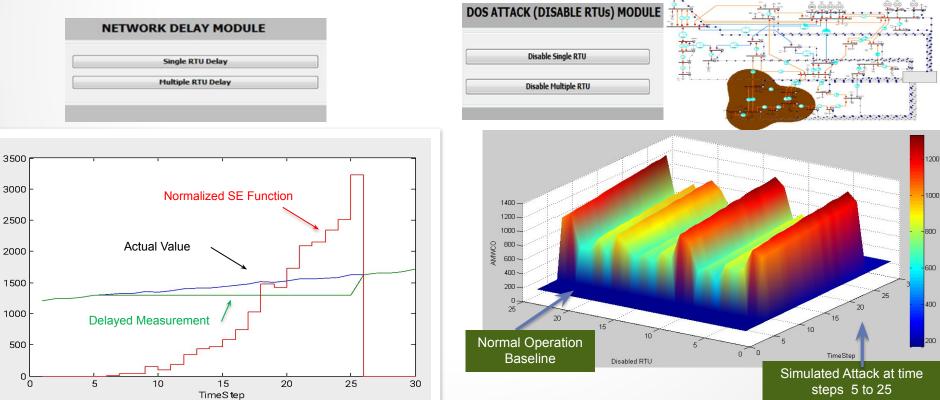
An alert message sent from the RTU to the CC.

•		
<u> </u>	****Choose A Final Decisio	on*****************
AMWCO	*Final Reject*	○ *Final Allow*
AMWCO	*Final Reject*	• *Final Allo


Final decision to accept or reject the command.

			Action: 0	CC <-> RTU				
Baud Rat	e Pr	opogati	on Delay	CC: Packet	ize	RTU: Pac	ket Size	
1572864		300		80		1500		
Default: 1572	864	Default	300 1	Default: 80 bytes.		Default: 1	500 byte	
	Sende	er	Rec	ipient	5	Station#		
C	C_port1		RTU_1		1			
D	efault: CO	_port1	Defa	ult: RTU	Defa	ult: 1		
# of Pa	ckets		Com	nand: CC ->	RTH			
1		Com		enerator Status-			-	
Default	1		Default Co	mmand: Send Me	sureme	ent V		
	Bus	Num1	BusNum	2 LineCi	rcuit	LineSta	tus	
Branch	39	-	41 -	- 1	-	Closed	-	
	Bu	sNum	BusPUVo	t BusRa	hd	-		
Bus	39	-	0.98	0.5				
	Bus	Num	GenID	GenSt	itus	GenMW	GenMVI	R GenVoltS
Generato	r 10	-	4	Open	-	49.35	-21.77	1.0
	Bus	Num	LoadID	LoadS	atus	LoadMW	LoadMV	'R
Load	1	-	A1 .	Closed	-	21.04	0.37	
	Bus	Num1	BusNum	2 LineCi	rcuit	LineStatu	s LineTap	
ransform	er s	-	2	- 1	-	Closed	1.00	
	Bus	Num	ShuntID	Shunts	tatus			
Shunt	6	-	1	Open	-			
	-	4			_	1		
	-	-	CAL	Run	(

A command simulation GUI at the CC.


Communication Network Delay & Disabled RTU

- Scenario: Case 3
 - Attacker floods network with useless packets delaying measurements from RTU to CC.
 - Delay is detectable by the SE, which sees increase in measurement residuals.
 - If delay persists, SE function increases beyond a threshold and CPSA logic is invoked.

- Scenario: Case 4
 - Attacker disables CC-RTU link.
 - CC cannot receive data from RTU or execute commands.
 - Observability analysis identifies unobservable parts.
 - Uncontrollable points are identified.
 - CPSA simulates attacker worst-case actions.

Results Monitoring

BusNum	BusNum:1	LineCircui	LineStatus	LineMW	LineMVR	BusNum	Gen	ID	GenStatu	GenMW	GenMVR	GenVoltSe
1	7	1	Closed	-21.04	-0.37	10	1	4	Closed	49.35	-22.3874	1
2	3	1	Closed	10.20337	-0.14802	11		5	Closed	48.2	-22.3874	1
5	2	1	Closed	5.13083	-0.05707	12		6	Closed	149.43	-86.7907	1
5	2	2	Closed	5.0733	-0.05522	13		7	Closed	207.021	24.43159	1.0348
3	4	1	Closed	10.20168	-0.00341	14	1	8	Closed	100	138.7	1.0348
5	6	1	Closed	8.832336	2.949891	15	8A		Closed	100	123.5	1.0348
BUS				TR	ANSFORME	R						
BusNum	BusName	BusPUVol	BusRad	Bu	sNum	BusNun	n:1 Lir	neCircu	i LineSta	tu: LineTap		
1	3SHILLAEC	1.014889	0.538019			5	2		1 Closed		1	
2	3ELSNRSW	1.016529	0.542856			5	2	3	2 Closed		1	
3	3ELSNR J	1.016344	0.541792			6	7	1	1 Closed		1	
4	3ELSANOF	1.016179	0.540943			6	7	2	2 Closed		1	
5	6ELSNRSV	1.016559	0.546357			8	9	2	1 Closed		1	
6	6SILVER 6	1.015285	0.544642		2	8	10	1	1 Closed		1	
LOAD					SHUN	т						
	LoadID	LoadStatu	LoadMW	LoadMVR	BusN	um Shun	tID	SSStat	us			
1	A1	Closed	21.04	0.37		6	1	Open				
4	A1	Closed	10.19974	0.112085		21	1	Open				
7	1	Closed	15.15717	0.402403	k.	23	1	Open				
9	1	Closed	13.34872	0.513412		24	1	Open				
12	E6	Closed	1.856063	1.187481	T.	27	1	Open				
13	EC	Closed	-12.1796	-9.14255		28	1	Open				

A sample meta-data of the power system components.

GEN	Fri 2016.08	Fri 2016.08.19 at 04:13:40 PM EDT									
BusNum	GenID	GenStatus	GenMW	GenMVR	GenVoltSet						
10	4	Closed	49.35	-22.3867	1						
11	5	Closed	48.2	-22.3867	1						
12	6	Closed	149.43	-86.7881	1						
13	7	Closed	d 207.021 24.43131	1.0348							
14	8	Closed	100	138.7	1.0348						
15	2	Closed	100	123.5	1.0348						
16	3	Closed	100	123.5	1.0348						
36	1	Closed	200	73.03659	1						

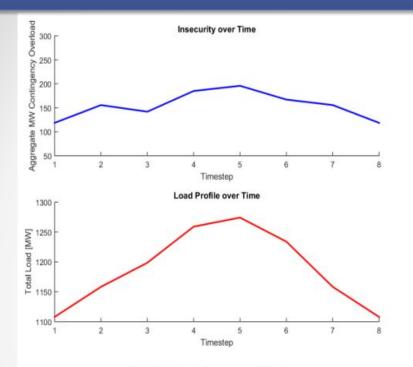
GEN	2016-08-1	9-16-13-58					
BusNum	GenID	GenStatus	GenMW	GenMVR	GenVoltSe		
10	4	Closed	49.35	-22.3867	1		
11	5	Closed	48.2	-22.3867	1		
12	6	Closed	-86.7881	1			
13	7	Closed	207.021	24.43131	1.0348		
14	8	Closed	100	138.7	1.0348		
15	2	Closed	100	123.5	1.0348		
16	3	Closed	100	123.5	1.0348		
36	1	Open	0	0	1		

Legitimate vs. malicious command to open a generator breaker (Bus number 36, generator ID 1).

Results Monitoring

System Susceptibility Metric

Components	Low	Moderate	High	Critical			
Bus	1-12, 18, 35	17, 13-16, 37-42	20-23, 25-34	19, 24, 36			
Generator	2-4	5	7-8	1,6			
Load	3-10, 26	1-2, 22-24	11-20	21, 25, 27			
Transformer	2-5	1	-	6			
Shunt	1-3	5-9	-	4			


Access Points Metric

Components	Low	Moderate	High	Critical
Substation RTU	1-4	5, 7-14	16-23	6, 15, 24
CC Port	1-9, 11-18	19-24	10	-
Router	1	-	2	-

Threat Suspect	Source IP Destination		Timestamp	Data Type	Packet Size (Octets)
CC Port-10	192.168.0.3	192.168.0.7	23-Oct 10:15:27	substation data	255
RTU-6	192.168.0.7	192.168.0.13	31-Oct 21:32:11	command "open Gen 6"	125
RTU-16	192.168.0.7	192.168.0.23	5-Nov 11:45:37	command "open Load 21"	127
RTU-24	192.168.0.7	192.168.0.31	10-Nov 18:10:23	command "open Trans 6"	122

Threat Capability Metric

Malicious Command Impact Monitoring

(a) Normal operation.

Overload Insecurity over Time 300 õ 250 tinge 200 Aggregate MW Cor 150 100 50 2 3 4 5 6 7 Timestep Load Profile over Time 1300 r [MM] 1250 1200 1200 1150 1100 2 3 4 5 6 7 Timestep

(b) Malicious command injection operation.

Detecting malicious operation at timestep 5 by comparing the SysAMWCO

2.0 receive router ad from	Router2													
5.3														
5.3 receive incoming	Packet #1	out of	1	with id	997260727	from	Output_CC_port1	to	RTU_1	tag	GridSimT	delay		0
5.3 enqueing	Packet #1	out of	1	with id	997260727	from	Output_CC_port1	to	RTU_1	tag	GridSimTa	ags.FLOW	SUBMIT	
5.3 dequeuing	Packet #1	out of	1	with id	997260727	from	Output_CC_port1	to	RTU_1	tag	GridSimTa	ags.FLOW	SUBMIT	
10.3														
10.3 receive incoming	Packet #1	out of	1	with id	1721393242	from	Output_CC_port2	to	RTU_2	tag	GridSimT	delay		0
10.3 enqueing	Packet #1	out of	1	with id	1721393242	from	Output_CC_port2	to	RTU_2	tag	GridSimTa	ags.FLOW	SUBMIT	
10.3 dequeuing	Packet #1	out of	1	with id	1721393242	from	Output_CC_port2	to	RTU_2	tag	GridSimTa	ags.FLOW	SUBMIT	
15.3														
15.3 receive incoming	Packet #1	out of	1	with id	339570773	from	Output_CC_port3	to	RTU_3	tag	GridSimT	delay		0
15.3 enqueing	Packet #1	out of	1	with id	339570773	from	Output_CC_port3	to	RTU_3	tag	GridSimTa	ags.FLOW	SUBMIT	
15.3 dequeuing	Packet #1	out of	1	with id	339570773	from	Output_CC_port3	to	RTU_3	tag	GridSimTa	ags.FLOW	SUBMIT	

Event logs maintained at the intermediate routers.

Thank You